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Abstract. A Green function approach to the boundary effects of a free-electron gas in a magnetic
ficld is presented. It is shown that truncation of the multiple-reflection expansion for the Green
fonction of 2 confined system is not justified if a magnetic field is present, even for a system
with flat boundaries. Using the full expansion we calculate the profiles for the particle density,
the current density and the components of the pressure tensor near the boundary.

1. Introduction

The study of boundary effects and finite-size corrections in physical systems has a long
history. A well known example is the Landaun orbital diamagnetism of a free-electron gas
in a magnetic field. Although in Landau’s original derivation [1] only bulk properties are
considered, the diamagnetism is actually cansed by surface currents that are induced by
the magnetic field. Unfortunately, it is difficult to get a hold on these surface effects, in
particular for general systems with arbitrary shapes. Much work has been done on the
subject, as can be seen from the rather extensive literature (see [2—14] and references cited
therein). .

An interesting approach to the study of surface effects in finite systems is due to Balian
and Bloch [15]. They present an equation for the Green function of a free-particle system
in a finite volume in terms of the Green function for the infinite domain. This equation,
which is valid for arbitrary domain shapes, is a so-called multiple-reflection expansion.
Higher-order terms in this expansion become increasingly more important when the local
radii of curvature of the wall diminish. For (nearly) flat surfaces the leading term in the
expansion is already sufficient to determine the first-order finite-size corrections. Later on,
Robnik [10] generalized this method so as to include the influence of an external magnetic
field on the motion of charged particles without mutual interaction. In deriving explicit
results for the boundary effects he took into account only the first term in the multiple-
reflection expansion, as was done before by Balian and Bloch. Whereas that approximation
is justified for an unmagnetized free-particle system in which the particle trajectories are
straight lines, it is not clear whether it still makes sense if the trajectories become curved
under the influence of the magnetic field.

In this paper we will investigate the validity of the truncation of the multiple-reflection
expansion for a magnetized free-particle system in a finite enclosure. In a manner similar
to that of [10], the formalism of [15] will be generalized to account for the presence of
a magnetic field. The resulting expansion will be analysed for the special case of slab
geometry in order to determine whether a truncation is indeed allowed for flat boundaries.
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Subsequently, it will be shown how the multiple-reflection expansion for the temperature-
dependent Green function can be rearranged to yield an expansion in the eyclotron frequency.
Finally, it will be demonstrated how the latter can be used to obtain explicit expressions
for the finite-size correction to the partition function of a non-degenerate electron gas and
for the profiles of some local physical quantities, such as the particle density or the electric
current density. The results will be compared with expressions derived recently by using
standard perturbation theory [16).

2. Green functions

We consider a free-electron gas in a uniform magnetic field. The electron gas is confined to
a three-dimenstonal cylinder-shaped domain D with hard walls. The base of the cylinder is
arbitrary and the direction of the magnetic field is perpendicular to the base manifold. The
Hamiltonian for a single particle in a magnetic field is given by

H=i(1"E )ZEHJ.+H|| ™
2m ¢
where
2 . a 1 5,
H, = —EA_L + lﬁwcx‘é“; + FRAE" @

We have taken the vector potential for the magnetic field B = (0, 0, B) to be in the Landau
gauge so that A = (0, Bx, 0). The associated cyclotron frequency is e, = ¢B/mec. Since
we can split off the z-dependent part in the Hamiltonian, the motion in the z direction
is trivial. Therefore, in what follows we will only deal with the transverse (x, y) part.
Accordingly, we shall write v to denote (x, y). The eigenvalve equation of the transverse
problem can be written as

H.L'Qlfn('-") = By (r). (3
The eigenfunction must vanish at the boundary
Y (r) =0 redD. (4)

The Green function corresponding to the eigenvalue equation is defined as

1
Gulr ) = 3 Uy ()% ®)
n n
for arbitrary complex z. The Green function satisfies the equation
(HL ~ )G (r,v) = =8(r — ') . (6)

with Dirichiet boundary conditions

G (r, ) =0 redD andlor 7’ €dD. N
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The relation with the energy and the temperature Green functions is
- i " i
Ge(r, ) = E[G3=E+i0(7', ) — Gp-iolr, )] 8)
3 )
Gotr.r) = [ dE€PEG(r, ) ©®
0

respectively.

We split the Green function in a part G, which is the Green function for the system
without confinement, and a correction part G° s0 that G, = G?+ G°. We will now derive
an equation for this correction part in terms of G° The cquatlcm whlch the correction part
satisfies is

(Hy —2)Gi(r, 7Yy =0 . : (10)
for all », 7' € D/3D, with the boundary condition
Gir, vy = —Go(r, ) r€3dD andfor v €3D. (1D

From (10), (11) and the Green equality one finds
Gor, ) = — 1 f 40" - [T G, ¥V, oy G2 1)  (12)

where 12" is the normal vector, directed outwards, at the point " of the boundary. The
symbol W in (12) means that the coordinate is located at the boundary. Furthermore, one
should interpret GX(r"¥, ') as [G2(»", v’ )] s pew+ Next, we differentiate (12) with respect
to 7/, take the limit ¥’ — =V and write it in the following form:

n' - [VuGir, )]
hz
~2m Jap

7 W

do" V! - [V Go(r, 7)) - [V GV, )]

i’
e W (L] [ “..JW

2
_ELD do_ﬂ'w " [vr”G (,r r )]r”_),rnw n [ TIGE(T”W, T’)]r,__rr;w

B v/t;D dO'”w [V G (T T”)]r"-a-'r”w n - [vT'G‘ZJ(T”w’ Tf)]r'TU"w }‘ (13)

In (13) we defined the following limiting procedure:
[V Gl 7)) oy ow = 5 [VeG2"™. )] o + 3 [V G Y] e (14)

that is, an average of two limits: one coming from the inside and one coming from
the outside of the system. The piece between curly brackets in (13) only contributes if
"W ~ o'W because the two terms otherwise cancel, Therefore, we can take the factors
with derivatives of G, out of the integral. Subsequently, one may use the asymptotic
formula

Glr, 7y~ — 7 loglr | (15)
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for the infinite-domain Green function for small |r—7’|, which follows from (6). In this way
one finds that the piece between curly brackets reduces to —(m/A%)n’ [V, G, (r, 7],
Consequently, equation (13) reduces to

- [V Gor, )]y = 20+ [V G, )]

I..*rfw .

W

»? w
B R RO L L (R e

(16)

One can solve this equation iteratively for n’- [ VG, (r, 7)]._, .w. The solution in its turn
can be substituted in (12) so as to get a (formal) expression for the Green function of the
confined system in terms of the infinite-domain Green function. The expression found in
this way can be understood as a muiltiple-reflection expansion of the Green function of the
confined system.

The multiple-reflection expansion for the Green function has been discussed extensively
in [15] for the case of a free-particle system without a magnetic field. In particuiar, both the
leading term and the higher-order terms of the multiple-reflection expansion are analysed in
detail in that paper. It is shown that for a (nearly) planar boundary the leading term is by far
the most important, whereas the higher-order terms contribute for curved boundaries only.
These findings are taken over as such in [10], where a magnetized free-particle system is
considered. Once again only the first term in the iteration is taken into account, while the
higher-order terms are assumed to be negligible for almost planar boundaries. However,
as mentioned already in the introduction of the present paper, it is not obvious that these
higher-order terms can be thrown away for a magnetized system as well. Indeed, because
the particles follow curved trajectories, they can scatter several times off the same boundary,
50 that the multiple-reflection argument in [10] may break down. For that reason we will
keep all terms in the expansion for the time being.

Let us consider the correction part G of the Green function for the case of a half-space
geometry x > 0 with a boundary located at x = 0. In this geometry (12} can be written as

B, [8Gs(r, )
C (AN 1 AN G, W 7
Ry B b I an

with 7% = (0, y”). Furthermore, one can write (16) as
3G, (r, ") _5 3G(r, )
ox’ 20 ax’ =0

Bt oo 3G, (r, ) 3GV, r")
+ ; dy" l: o ] l: z Yo ] . (18)
—ne xt—=0 x'310

We may now use the fact that the Green functions are all translation invariant in the y-
direction and introduce the Fourier representation

o0
G,(r,r) = f ke UGk, x, x). (19)

-0Q

In this representation we can solve (17) and (18) algebraically. The result is

hhi[aGS(k,x,x”)] {1_2xﬁ2[8Gg{k,0,x”)} ]“[
m PLAN x4t 10

Gy, x, x) = 3x” m axt

x Gk, 0, x"). (20)



Boundary effects in a magnetized free-electron gas 6091

To evaluate (20) we have to insert an explicit expression for Gg (k, x, x"}. It can be found
either by solving (6) directly, or by using (5). In both ways we find that the infinite-domain
Green function can be expressed in terms of parabolic cylinder functions [5, 17]:

Gzﬁ(k,x,x’)=—/ AR 12(V2E — E)Dsmp(—V2E ~B) @D
for x > x’, and

Golle,, 5}y = = | — 3ﬁs T(~Z + $)Ds1p(—V2(FE =D p(W2UE — k) . (22)

for x < x’. Here we introduced the abbreviations Z = z/Aw;, X = (mw./R)/%*x and
k= (/ma)' k.

If we substitute these formulae in (20) we arrive at the followmg expression for the
correction part of the Green function

¢ o - z—],fz(\/_é) _ z_ I . =
Golkx,¥) = [ 3h3 M(-2+3 )———Z . Dz-12(V2(E ~ 1)) D512 (V2% = B))
(23)

which is valid for all non-negative x and x’. Adding this result to either (21) or (22) one
obtains the complete Green function for the confined system.

The complete Green function for the confined system can also be found directly by
solving (6) with the appropriate boundary conditions for the half-space geometry [5]. In
this way one arrives at the same result as above, so that (23) is checked independently. This
check is useful in assessing the validity of a truncated version of the multiple-reflection
expansion for a system with a planar boundary. Indeed, in deriving (23} from (20) it was
essential to take into account the full expression between the curly brackets in (20). Usin'g
a truncated form, for instance by throwing away the partial derivative (which amounts to
using the leading order in the multiple-reflection expansion), would have led to a completely
different result for the correction part of the Green function. Hence, it must be concluded
that the use of a truncated version of the multiple-reflection expansion for a magnetized
free-particle system is not justified, not even for a planar-boundary geometry.

3. The finite-domain correction to the temperature Green function

If the temperature is sufficiently high, degeneracy effects play no role. In that case all
space-dependent properties of the system, like the profiles of the particle density or the
electric current density, follow directly from the temperature Green function. In this section
we shall derive the general form of the finite-domain correction to the temperature Green
function.’

The infinite-domain temperature Green function is [2] -

Gg(r,'r")=43m sinmh?;hw B ex l: ?(r )2 coth(Bhw./2)

+ A0 - y’)]. (24)
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Using equations (8) and (9) we can write (20) as

2 (1] I
Gk, x,x) = _2mh f f [ Gk, x, x )] TGSk, 0,x)  (25)
=0

a 14

where T; (k) is given by

Te(k) = 23(z) —

27k [ 3Gk, O, 'x’)]
m dx’ £'=0

+(2.m‘12)2f 4 [aG°r(k0x’)] [M —er. (26)
m 0 ax’ #=0 ax! =0 .

The delta function is multiplied by a factor 2 to compensate for the fact that it is non-zero
precisely at the edge of the area of integration.

Inserting (24) and transforming back to real space we find the correction part of the
temperature Green function as a multiple-reflection series to be

s,y =Y GP, ) | @7

n=I

where G,(e") (v, v’} is a multiple integral over 7’s:

2 A=l a8 B
GP (1) = (-1 (fi”—) [ e [ m0@
o

16732 \ 2mi/2
X ST TP [ (] (28)
Here we have defined 1,4y = 8 — 11 — - - - — Ty; moreover, O denotes the Heaviside step

function. The functions f and g are given by
1 nep-1 t3/2 ntl —(n+1)/2
fé’?l o1 Tntl (T’ T’) =T (l_.[ —L_) (Z ti)
o\uy S i=1
Wnchy (ly, [o! p-nf2 ma, \"2P
X 2(%)n[23n.even + Z 211—223)—1 Zti ( 5 )
p=0 i=1]
n+l
. R e _ n—1
X (02X + 0 X"+ iy — y )" 1I:(fz -1 (Zfi) ( 2p )x

+ (2';) (tzx + 113"+ iy — y’))] } 29)

(m) mwc & - oy 112
8hrr T ) = ) lox+ax +i(y —y)]

- [(t2 + x4+ :;‘)x'z] } (30)
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where we have defined #; = tanh(tiw:/2) and 5; = sinh(t;hw,/2); furthermore, (2),
denotes the Pochhammer symbol and [x] is the entier function.

One way to look at the series (27) with (28) is to interpret it as an expansion of the
correction part of the temperature Green function in powers of the cyclotron frequency.
Indeed, for increasing n the terms Gﬁ (r, 7") in the expansion are of growing order in w;.
For » = 7' one has, for example,

Ol dd
P, )_{ @) mo (31)

O 7 even.

4. Calculation of profiles for the non-degenerate case

As already stated in the previous section, we can use the temperature Green function to
calculate the spatial dependence of physical properties near the boundary of the system. In
fact, we can derive a series expansion in the cyclotron frequency for the profiles of physical
observables, like the particle density, electric cutrent density and pressure tensor.

~ We start with the density profile, which is obtained from the temperature Green function
as

n(x)= (0) —=Gg(r, v} ' (32)

where Zf) is the transverse part of the partition function per unit of surface for the non-
confined system

Z©@ _ m Bhawe/2

L7 27852 sinh(Bhec/2) (33)

In order to calculate the density profile up to second order in the cyclotron frequency,
we have to evaluate, according to (31), the terms of first, second and _third order in the
multiple-reflection expansion (27). By expanding the first-order term up to w? we get

2 O PP S
1/m o O EE -

1 B 2]
xexp[ 4‘:(,6 t)é (34)

O (x) = — {1+ 3820208 — 1) — Z P 0lE?]

with £2 := 2mx?2/(8R%). This is a sum of integrals of the type (A1), which can be expressed
in terms of Whittaker functions, as explained in the appendix. In this way we get

1) = —— (1 — R PW (6D — LnfHlel BT PW_y (@D (39)
Y 3 c bR 1 - .

Note that we find contributions of order ? and order w?.
The n =2 and n = 3 terms in the muitiple-reflection expansion (27) are both of order
2, as follows from (31). Hence, in evaluating these terms by starting from (29) and (30)

Lt
i
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only the leading terms of s5; and 1; in powers of the cyclotron frequency have to be retained.
For n =2 we find

nh?@?  [F o (B—m -V + ) 1, o+
@ i 2, 1 2 1 (5]
nPx) = Ton \/_f dr:f dry — (H— —f— - 5)

Xexp( 1 Mg) (36)

(3451

The integration over 1, at fixed 7 4 72, can be performed with the use of equations (A1)~
(A6). The result contains an error function, which can be eliminated by partial integration.
The ensuing integral can be carried out with the help of (A7), with the result

202 2
@y — nBh ey —8p
7' (x) ——32\/55 e [6W_:

'_l
4'q

€ — W34 +2W_3, D). (37)

Finally, we consider the n = 3 term. In order w? we find

ﬁz 2 -1 - r:—rz —_ — Ty — )12
) = el d?.‘x drz v’ﬁ B-u-n—1
167372 JET 3/2

X exp (_% ﬁfﬁ‘_ﬁgz) (38)

T2

The integration over 73 is trivial, and the rest of the steps are similar to the n = 2 case, We
end up with

nfhlw?
32.E
If we now collect all the terms, and evaluate the Whittaker functions using their recursion

relations, we get the following expression for the density profile up to second order in the
cyclotron frequency

nPx) = ~———=2eF2W_y 1 (69 (39)

n(x) = n(l - &) + ngrtole* [~ — V7 £Brfo(®)] . (40)

In the same manner we can calculate the y-component of the current profile

n en[38 e
J(x) = Z(O) 2m1[ay glr, vy — —Gﬂ(r 'r):l - E—;n(x)Ay(r). 41)
Up to first order we get
Px) = "”“""/_ £2Brfe(s) (42)

where k = [m/(28*8)]'/2. _
Finally, the profiles of the components of the pressure tensor follow from

Pi(x) = ;}# [@ =7 Gatr, 7], (43)
L .
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(no summation), where we have wntten 7 = p — (e/c}A(r). After some algebra
equation (43) yields ’

Pii(x) = % [1- (1= 8067 | + Lnpr2el P! 6) . (a4)
with

FUE) =1—(1+£9e™ + /7 § Brfc() ©@5)

F(§) =1-(1 — 467 — 23697 — 64/ £3(1 + LEDErfe(s) (46)

FiE) = 38%% — L/m £°Bric(y). @47)

The results (40), (42), (44) agree with those obtained previously via a direct perturbation
method [16]. The present method is less complicated in the technical details. Moreover, it
can be generalized easily to include higher-order terms in the cyclotron frequency and to
describe systemns with other geometries.

From the present formalism it is straightforward to analyse the finite-size corrections to
the iransverse partition function for a system in a slab geometry, that is, for a system which
is confined between two walls at x = 0 and x = L. The transverse part of the partition
function can be found from the temperature Green function Gg(r, r) by integration:

L
Z,= lf dx Gg(r,7) (48)
LJo

where Gg(r, r) is now the temperature Green function for the system in a slab geometry.
This Green function foilows from the half-space Green function by adding terms with x
replaced by L — x. The n = 1 contribution to Z, can be found from (28)-(30). After
integration over x one gefs

k (Bhawe)*? fﬂ q 1
25723128 L [sinh{Bhew, /2)]‘/2 t [sinh{zhew./2) sinh{(8 — r)hwc/Z)]lﬂ'
(49)

z{P =—

By introducing the variable z = tanh(rﬁwc/4), we can write the integrand in an algebraic
form. One gets

1/2(1 _ IZ)K(t)
N

where K () is the complete elliptic integral of the first kind [17], and where we introduced
. the variable ¢ = tanh(Bhiw./4). The result (50} ditfers from that in [10], where the lowest-
order term (with n = 1) in the multiple-reflection expansion of the transverse partition
function is approximated by making some additional assumptions about its behaviour. -
After expanding in terms of w. one finds from (33) and (50} that up to second order in
@, the sum of the n = 0'and » = 1 parts of the partition function can be written as

ZW = —(Bhay) (50)

23:3/2L

(0+1J=Z(0)‘_£ 1 1 222)] Ot
Z7 1 [1 ZkL( + 192ﬁﬁ + Olw /L), (51}
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As we have seen above, the # = 1 term is not sufficient to evaluate the finite-system
correction to the Green function and to the partition function, if a magncnc field is present.
Indeed, to obtain the complete finite-size correction of the partition function in second order
in the cyclotron frequency one has to calculate the n = 2 and n = 3 contributions as well.
The fastest way to arrive at the result is by substituting (32}, (37) and (39} in (48). One
finds

z, =20 [1 - % ( ﬁ2 72 2)} + O(wi/L). (52)

This agrees with the results found in [6,7,16]. However, it differs from (51). Thus,
it becomes obvious once again that it is essential to take the higher-order terms in the
multiple-reflection expansion into account, even if the boundaries are flat.

Appendix

In order to calculate the profiles we need to evaluate integrals of the form

B a2
I,u,,,:fo drt“(ﬁ—r)”exp( - )) (A1)

where u and v are half-integral. Introducing x == 8%/47(B — t) and using the relation

(1_ le) +(1+Vx;1) = 2572 Tjo) (/) (A2)

where T;, are the Chebyshev polynomials of the first kind, we can rewrite the integral (A1)
as B

5 ptvtl [<] 1 . 4012
b = (5) fl b G Ty /D e ("Fx) @

This integral can be written in terms of Whittaker functions by employing the identity [18]

=5 -1
[ e T e = T ) expl-2/D Wapaovisenoii®) (a9

for z > 0 and e real. For integer & the Whittaker functions can be expressed in terms of
algebraic functions, exponentials and error functions by using their recursion relations [19].
Special cases of the Whittaker functions are

Wy x) = x'Mem/? (A5)
W_y1(x) =7 x4 e* PErfe(/X). (A6)

These formulae can be used as a starting point for the recursion relations.
Another type of integral that we encounter in the calculation of the profiles can also be
written in terms of Whittaker functions [18]:

A a - a
“leg _ oav-l _a (e=1)/2 glut2v~1/2 _
L dr 7 (B —1) exp( r) = g e gik exp( Zﬁ) L)
X Waop—2wpprea/B) (A7)

where B, v and a are positive. These Whittaker functions can likewise be reduced to
algebraic functions, exponentials and error functions, if ¢ and v are half-integral.
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