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Abstract A Green function approach to the boundary effects of a freeelectron gas in a magnetic 
field is presented. It is shown that mncation of the multiplereflection expansion for the Green 
function of a confined system is not justified if a magnetic field is present, even for a system 
with flat boundaries. Using the full expansion we calculate the profiles for the particle density. 
the current density and the components of the pressure tensor near the boundary. 

1. Introduction 

The study of boundary effects and finite-size corrections in physical systems has a long 
history. A well known example is the Landau orbital diamagnetism of a free-electron gas 
in a magnetic field. Although in Landau's original derivation [l] only bulk properties are 
considered, the diamagnetism is actually caused by surface currents that are induced by 
the magnetic field. Unfortunately, it is difficult to get a hold on these surface effects, in 
particular for general systems with arbitrary shapes. Much work has been done on the 
subject, as can be seen from the rather extensive literature (see [2-141 and references cited 
therein). 

An interesting approach to the study of surface effects in finite systems is due to Balian 
and Bloch [15]. They present an equation for the Green function of a free-particle system 
in a~ finite volume in terms of the Green function for the infinite domain. This equation, 
which is valid for arbitrary domain shapes, is a so-called multiple-reflection expansion. 
Higher-order terms in this expansion become increasingly more important when the local 
radii of curvature of the wall diminish. For (nearly) flat surfaces the leading term in the 
expansion is already sufficient to determine the first-order finite-size corrections. Later on, 
Robnik [lo] generalized this method so as to include the influence of an external magnetic 
field on the motion of charged particles without mutual interaction. In deriving explicit 
results for the boundary effects he took into account only the first term in the multiple 
reflection expansion, as was done before by Balian and Bloch. Whereas that approximation 
is justified for an unmagnetized free-particle system in which the particle trajectories are 
straight lines, it is not clear whether it still makes sense if the trajectories become curved 
under the influence of the magnetic field. 

In this paper we will investigate the validity of the truncation of the multiple-reflection 
expansion for a magnetized free-particle system in a finite enclosure. In a manner similar 
to that of [lo], the formalism of [15] will be generalized to account for the presence of 
a magnetic field. The resulting expansion will be analysed for the special case of slab 
geometry in order to determine whether a truncation is indeed allowed for flat boundaries. 
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Subsequently, it will be shown how the multiple-reflection expansion for the temperature- 
dependent Green function can be rearranged to yield an expansion in the cyclotron frequency. 
Finally, it will be demonstrated how the latter can be used to obtain explicit expressions 
for the finite-size correction to the partition function of a non-degenerate electron gas and 
for the profiles of some local physical quantities, such as the particle density or the electric 
current density. The results will be compared with expressions derived recently by using 
standard perturbation theory [16]. 

P John and L G Suttorp 

2. Green functions 

We consider a free-electron gas in a uniform magnetic field. The electron gas is confined to 
a three-dimensional cylinder-shaped domain D with hard walls. The base of the cylinder is 
arbitrary and the direction of the magnetic field is perpendicular to the base manifold. The 
Hamiltonian for a single particle in a magnetic field is given by 

1 

where 

We have taken the vector potential for the magnetic field B = (0.0, B )  to be in the Landau 
gauge so that A = (0, B x ,  0). The associated cyclotron frequency is o, = eB/mc.  Since 
we can split off the z-dependent part in the Hamiltonian, the motion in the z direction 
is trivial. Therefore, in what follows we will only deal with the transverse ( x ,  y) part. 
Accordingly, we shall write T to denote ( x ,  y ) .  The eigenvalue equation of the transverse 
problem can be written as 

HJ.@n(T) = &$n(T) .  (3) 

The eigenfunction must vanish at the boundary 

+“(T) = o T E a n  (4) 

The Green function corresponding to~the eigenvalue equation is defined as 

for arbitrary complex z. The Green function satisfies the equation 

(Hi - z)G~(T,  T’) = -S ( r  - T‘) 

with Dirichlet boundary conditions 

Gz(r, T’) = 0 T E aD and/or T’ E aD. 
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The relation with the energy and the temperature Green functions is 
. .  

(8) 

(9) 

I 
G E ( T ,  T’) = - [ G z = ~ + i ~ ( ~ .  7’) - G I = ~ - i o ( ~ ,  ~ ’ ) l  

2R 
m 

G ~ ( T ,  T’) = 1 dEe-”GE(T, T’) 

respectively. 
We split the Green function in a part G:, which is the Green function for the system 

without confinement, and a correction part GE, so that G ,  = G: + G:. We will now derive 
an equation for this correction part in terms of G:. The equation which the correction part 
satisfies is 

(HL - z)GE(T, T’) = 0 (10) 

for all T, T‘ E D / a D ,  with the boundary condition 

(11) 0 G;(T, T’) = -G,(T, T‘) T E 8D and/or r’ E 8D. 

From (lo), (11) and the Green equality one finds 

[V+,G,(T, T”)], , ,+, , ,~ G,(T 0 rrw , T’) (12) 

where n” is the normal vector, directed outwards, at the point T” of the boundary. The 
symbol W in (12) means that the coordinate is located at the boundary. Furthermore, one 
should interpret G:(r”W. T’) as [G:(r”. T’ ) ]+ ,+ , , ,~ .  Next, we differentiate (12) with respect 
to T’, take the limit T’ + rfW and write it in the following form: 

12‘ * [vrtGE(~, ~’)],.+,,w 

’ 

In (13) we defined the following limiting procedure: 

that is, an average of two limits: one coming from the inside and one coming from 
the outside of the system. The piece between curly brackets in (13) only contributes if 
T ’ ’ ~  N T ’ ~ ,  because the two terms otherwise cancel. Therefore, we can take the factors 
with derivatives of G, out of the integral. Subsequently, one may use the asymptotic 
formula 
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for the infinite-domain Green function for small I T - T ’ ~ ,  which follows from (6). In this way 
one finds that the piece between curly brackets reduces to -(m/h2)n’.[V+Gr(r. T’)],,,,,~. 
Consequently, equation (13) reduces to 

n‘ . [V,,G,(T, T’)],,-,,~ = 2n‘ . [V+G;(r, T ’ ) ] ~ , . + + ~  

P John and L.G Sunorp 

(16) 

One can solve this equation iteratively for n’. [V,,G,(T, T’)], ,+,~. The solution in its turn 
can be substituted in (12) so as to get a (formal) expression for the Green function of the 
confined system in terms of the infinite-domain Green function. The expression found in 
this way can be understood as a multiple-reflection expansion of the Green function of the 
confined system. 

The multiple-reflection expansion for the Green function has been discussed extensively 
in [15] for the case of a free-particle system without a magnetic field. In particular, both the 
leading term and the higher-order terms of the multiple-reflection expansion are analysed in 
detail in that paper. It is shown that for a (nearly) planar boundary the leading term is by far 
the most important, whereas the higher-order terms contribute for curved boundaries only. 
These findings are taken over as such in [lo], where a magnetized free-particle system is 
considered. Once again only the first term in the iteration is taken into account, while the 
higher-order terms are assumed to be negligible for almost planar boundaries. However, 
as mentioned already in the introduction of the present paper, it is not obvious that these 
higher-order terms can be thrown away for a magnetized system as well. Indeed, because 
the particles follow curved trajectories. they can scatter several times off the same boundary, 
so that the multiple-reflection argument in [IO] may break down. For that reason we will 
keep all terms in the expansion for the time being. 

Let us consider the correction part G; of the Green function for the case of a half-space 
geometry x 0 with a boundary located at x = 0. In this geometry (12) can be written as 

A’ a G, (T , T”) cp. T’) = - 2m /-dy” -- [ ax,, ] X”+O G;(T”~,T’) 

with T I ‘ ~  = (0, y”). Furthermore, one can write (16) as 

We may now use the fact that the Green functions are all translation invariant in the y- 
direction and introduce the Fourier representation 

m 

G Z ( r ,  T’) = dkeikw-Y)G,(k,x, x‘) .  (19) L 
In this representation we can solve (17) and (18) algebraically. The result is 
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To evaluate (20) we have to insert an explicit expression for G!(k, x .  x ‘ ) .  It can be found 
eithcr by solving (6) directly, or by using (5). In both ways we find that the infinite-domain 
Green function can be expressed in terms of parabolic cylinder functions [5,17]: 

for x x’, and 

for x < x’. Here we introduced the abbreviations 2 = z /ho , ,  f = (mo./h)’/’x and 

If we substitute these formulae in (20) we arrive at the following expression for the 
= (h/mo,)1/2k.  

correction part of the Green function 

(23) 

which is valid for all non-negative r and x’. Adding this result to either (21) or (22) one 
obtains the complete Green function for the confined system. 

The complete Green function for the confined system can also be found directly by 
solving (6) with the appropriate boundary conditions for the half-space geometry [5]. In 
this way one arrives at the same result as above, so that (23) is checked independently. This 
check is useful in assessing the validity of a truncated version of the multiple-reflection 
expansion for a system with a planar boundary. Indeed, in deriving (23) from (20) it was 
essential to take into account the full expression between the curly brackets in (20). Using 
a truncated form, for instance by throwing away the partial derivative (which amounts to 
using the leading order in the multiplereflection expansion), would have led to a completely 
different result for the correction part of the Green function. Hence, it must be concluded 
that the use of a truncated version of the multiple-reflection expansion for a magnetized 
free-particle system is not justified, not even for a planar-boundary geometry. 

3. The finite-domain correction to the temperature Green function 

If the temperature is sufficiently high, degeneracy effects play no role. In that case all 
space-dependent properties of the system, like the profiles of the particle density or the 
electric current density, follow directly from the temperature Green function. In this section 
we shall derive the general form of the finite-domain correction to the temperature Green 
function: 

The infinite-domain temperature Green function is [2] 

- r’)2coth(pRWc/2) muc G ; ( r ,  r‘) = 
47rh sinh(phwJ2) 

1 imo, + F t X  +X”Y - Y’) . 
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Using equations (8) and (9) we can write (20) as 

P John and L G Suitorp 

where T,(k) is given by 

The delta function is multiplied by a factor 2 to compensate for the fact that it is non-zero 
precisely at the edge of the area of integation. 

Inserting (24) and transforming back to real space we find the correction part of the 
temperature Green function as a multiple-reflection series to be 

m 
G;(T,T') = ~ G $ ' ( T , T ' )  

4=1 

where G$)(v, T')  is a multiple integral over r's: 

Here we have defined h+l 
function. The functions f and g are given by 

,3 - q - . . . - r.; moreover, 0 denotes the Heaviside step 
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where we have defined ti = tanh(rifiwJ2) and si = sinh(qAo,j2); furthermore, (a),, 
denotes the Pochhammer symbol and [XI is the entier function. 

One way to look at the series (27) with (28) is to interpret it as an expansion of the 
correction part of the temperature Green function in powers~ of the cyclotron frequency. 
Indeed, for increasing n the terms GF)(r ,  T I )  in the expansion are of growing order in wc. 
For T = T’ one has, for ‘example, 

O(w:-’) n odd 

WJ:, n even. 
G ~ ) ( T ,  T )  = 

4. Calculation of profiles for the non-degenerate case 

As already stated in the previous section, we can use the temperature Green function to 
calculate the spatial dependence of physical properties near the boundary of the system. In 
fact, we can derive a series expansion in the cyclotron frequency for the profiles of physical 
observables, like the particle density, electric current density and pressure tensor. 

We start with the density profile, which is obtained from the temperature Green function 
as 

where Zy) is the transverse part of the partition function per unit of surface for the non- 
confined system 

In order to calculate the density profile up to second order in the cyclotron frequency, 
we have to evaluate, according to (31), the terms of first, second and-third order in the 
multiple-reflection expansion (27). By expanding the first-order term up to 0,” we get 

with 5’ := 2mx2/(pfi2). This is a sum of integrals of the type (AI), which can be expressed 
in terms of Whittaker functions, as explained in the appendix. In this way we get 

Note that we find contributions of order w: and order U,’. 

The n = 2 and n = 3 terms in the multiple-reflection expansion (27) are both of order 
o,”, as follows from (31). Hence, in evaluating these terms by starting from (29) and (30) 
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only the leading terms of si and ti in powers of the cyclotron frequency have to be retained. 
Fo rn=2wef ind  

P John and L G Suttorp 

The integration over q, at fixed TI +q, can be performed with the use of equations (A1)- 
(A6). The result contains an error function, which can be eliminated by partial integration. 
The ensuing integral can be carried out with the help of (A7), with the result 

Finally, we consider the n = 3 term. In order w," we find 

The integration over 53 is trivial, and the rest of the steps are similar to then = 2 case. We 
end up with 

If we now collect all the terms, and evaluate the Whittaker functions using their recursion 
relations, we get the following expression for the density profile up to second order in the 
cyclotron frequency 

n(x)  = n(1 -e-") + ~ n p 2 h z 0 , 2 ( 4  [e-'' - fiaErfc(e)]. (40) 

In the same manner we can calculate the y-component of the current profile 

Up to first order we get 

where k [m/(2hzg)]1/2. 
Finally, the profiles of the components of the pressure tensor follow from 
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After some algebra (no summation), where we have written T = p - ( e / c ) A ( r ) .  
equation (43) yields 

with 
~~ 

~'(6) = 1 - (1 + 6')e-E' + J;i63~rfc(f) 

~ ' ( 5 )  = ft4e-E2 - f J ; ? t5~dc ( t ) .  

(45) 

(46) 

(47) 

The results (40), (42). (44) agree with those obtained previously via a direct perturbation 
method [16]. The present method is less complicated in the technical details. Moreover, it 
can be generalized easily to include higher-order terms in the cyclotron frequency and to 
describe systems with other geometries. 

From the present formalism it is straightforward to analyse the finitesize corrections to 
the transverse partition function for a system in a slab geometry, that is, for a system which 
is confined between two walls at x = 0 and x = L. ,The transverse part of the partition 
function can be found from the temperature Green function Go(', r )  by integration: 

P(t) = 1 - (1 - 46'- ;f4)e-f' - 6 ,h t3 (1  + $e')Erfc(t) 

1 '  
21 = 1 dx G ~ ( T ,  T) (48) 

where Go(?-, r )  is now the temperature Green function for the system in a slab geometry. 
This Green function follows from the half-space Green function by adding terms with x 
replaced by L - x .  The n = 1 contribution to ZI  can be found from (28)-(30). After 
integration over x one gets 

By introducing the variable I = tanh(rfiwc/4), we can write the integrand in an algebraic 
form. One gets 

where K ( t )  is the complete elliptic integral of the first kind [17]. and where we introduced 
the variable t = tanh(pfiwJ4). The result (50) differs from that in [lo], where the lowest- 
order term (with n = 1) in the multiple-reflection expansion of the transverse partition 
function is approximated by making some additional assumptions about its behaviour. 

After expanding in terms of w, one finds from (33) and (50) that up to second order in 
w, the sum of the n = O'and n = 1 parts of the partition function can be written as 



6096 P John and L ~ G  Suttorp 

As we have seen above, the n = 1 term is not sufficient to evaluate the finite-system 
correction to the Green function and to the partition function, if a magnetic field is present. 
Indeed, to obtain the complete finite-size correction of the partition function in second order 
in the cyclotron frequency one has to calculate the n = 2 and n = 3 contributions as well. 
The fastest way to anive at the result is by substituting (32),(37) and (39) in (48). One 
finds 

This agrees with the results found in [6,7,16]. However, it differs from (51). Thus, 
it becomes obvious once again that it is essential to take the higher-order terms in the 
multiple-reflection expansion into account, even if the boundaries are flat. 

Appendix 

In order to calculate the profiles we need to evaluate integrals of the form 

where p. and v are half-integral. Introducing x = B2/4r(p - 5 )  and using the relation 

where T, are the Chebyshev polynomials of the first kind, we can rewrite the integral (Al) 
as 

This integral can be written in terms of Whittaker functions by employing the identity [IS] 

exp(-zx) = ~-~/'-'/~r(;) exp(-z/2) ~a/Z-1/4.0/2-1/4(Z) (A4) 
m xu-l L 

for z > 0 and a! real. For integer a the Whittaker functions can be expressed in terms of 
algebraic functions, exponentials and error functions by using their recursion relations [19]. 
Special cases of the Whittaker functions are 

~ i , + ( x )  = x1/4e-x/2 (A5) 

W-$,* (x )  = 6 ~'/~e' '~Erfc(fi). (-46) 

Another type of integral that we enconnter in the calculation of the profiles can a b b e  
These formulae can be used as a starting point for the recursion relations. 

written in terms of Whittaker functions [18]: 

x W(I -p-2")/2.&/Z(alB) (A7) 

where p ,  v and a are positive. These Whittaker functions can likewise be reduced to 
algebraic functions, exponentials and error functions, if f i  and v are half-integral. 
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